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ScienceDirect
Research on sociotechnical transitions depends on the

identification of stable sociotechnical systems (STS) and

evaluating when, why, and how they change. However, much

research on STS includes only implicit reference to system

stability. In contrast, researchonsocial-ecologicalsystems(SES)

has a long history of investigating stability and equilibrium. In this

text,we identify howstability is incorporated inSESresearch,and

we identify three roles that equilibrium often takes in this process.

We use these insights to inform our review of sociotechnical

transitions literature and identify three pillars of sociotechnical

stability. Reviewing literature on sociotechnical transitions

through a focus on stability and equilibrium highlights important

areas for future research on STS and how they change. Explicit

and descriptive research on sociotechnical stability can help

differentiate stochastic change from sociotechnical transition

and improve understanding of sociotechnical resilience.
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Introduction
Recent calls for sustainable energy production, improved

monitoringofnaturalresources,andenhancedtransparency

in environmental governance emphasize the importance of

sociotechnical systems(STS)research[1–3,4�].STSarethe
www.sciencedirect.com 
“interlinked mix of technologies, infrastructures, organiza-

tions, markets, regulations, and user practices that together

deliver societal functions” [5�]. Sociotechnical transitions

refer to integrated, multi-level changes in technologies,

infrastructures, organizations,markets, andregulations that

define STS [6,7]. Such transitions require synergistic

changes in science, markets, engineering, and politics [8].

Literature identifies, documents, and critically assesses

different forms of sociotechnical transition, but it often

does not analyze sociotechnical stability [9�].

Attending to when and why STS remain stable is impor-

tant for understanding sociotechnical transition. Differ-

entiating stochastic change from system-level transition

demands the definition of a stable or steady system state,

and defining system-level stability often relies upon

reference to equilibrium [10,11]. The identification of

stability and equilibrium in natural, social, or social-

ecological systems (SES) is a topic of longstanding

academic debate, and it informs related literature on

transition [12]. In contrast, STS research does not often

focus on stability or equilibrium. For example, authors

frame sociotechnical transition away from fossil fuels as

a phenomenon with multiple transition pathways

[13�,14,15], but they do not often investigate when

tipping points occur or are absent. The identification

of tipping points as moments of transition requires a

definition of system-level stability [16,17]. This text

seeks to motivate further study of sociotechnical stability

and equilibrium to advance knowledge of how STS

form, emerge, and remain over time. In turn, these

insights can contribute to advancing sociotechnical

transitions scholarship [9�].

In this review article, we examine stability and equilib-

rium within the context of SES research to inform our

review of sociotechnical transition pathways and identify

pillars of stability from literature on STS. In the following

section, we consider how research incorporates concepts

of stability and the different forms equilibrium takes. In

the third section, we review different sociotechnical

transition pathways and assess their relationship to stabil-

ity and equilibrium. In the fourth section, we consider

three pillars of sociotechnical stability that emerge from

the STS literature. Together, these sections review

recent research and emphasize the promise of explicit

and descriptive study of sociotechnical stability.
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A typology for considering how systems research incorporates

stability.
Stability and equilibrium in social-ecological
systems research
Scholarship on social and ecological stability are founda-

tional to SES research. SES research represents systems

through verbal or mathematical models that contain

component variables. For example, measurements of

vegetation (species richness, diversity, land cover) and

livestock can represent a social-ecological rangeland sys-

tem [18]. A system’s state is defined by the value or

condition of those variables. And stability—sometimes

referred to as ‘stability landscapes’, ‘stability domains’, or

‘basins of attraction’—refers to the tendency of variables

to vary around an ‘attractor’, also known as an equilibrium

[10,12]. However, SES are constantly affected by distur-

bance and stochasticity, and the tendency of variables to

move toward an attractor can be unpredictable and

unknowable. Stability in some SES research is, therefore,

predicated upon a notion of equilibrium, but it is

not necessarily concerned with its direct observation or

measurement [11].

As a term in numerous natural and social science

disciplines, equilibrium broadly refers to the balance of

opposing forces. This balance is often theoretical, and it

informs arguments concerning the stability as well as the

transition of a system. In SES research, the theoretical

as well as empirical investigation of stability and equilib-

rium are critical to identifying when transition occurs.

Transition refers to when a system is no longer defined by

variables that tend toward one or multiple attractors [11].

Thus, the first step in identifying transition requires the

ability to describe stability.

Compared to STS studies, research on SES has a stron-

ger focus on stability and equilibrium [4�]. SES research

that builds from stability and equilibrium to understand

transition promises to inform STS research because of

the parallels between the two fields of study [19]. SES

research combines insights on market dynamics, politics,

culture, and other social dimensions to better understand

human-environmental relationships [20,21�]. STS

research similarly examines social dimensions to under-

stand the relationship between people, politics, and

technology [6,22]. To aid our discussion of stability

and equilibrium, we use a basic typology to consider

how research incorporates the concept of stability

(Figure 1), and we identify three forms that the term

equilibrium takes in SES, STS, and related disciplines

(Table 1).

Equilibria as numeric values

In ecology, equilibrium for a given population is defined

as the population size when its growth rate, or change over

time, is zero. As such, equilibria represent discrete values

that are calculated by setting differential equations to

zero. In population biology, practitioners utilize logistic
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growth curves as simple, realistic models of population

growth that produces a stable equilibrium [23]. In these

models a negative feedback mechanism, such as the

availability of food or the extent of predation, causes

the growth rate to decline as population size increases.

This growth continues until the population size eventu-

ally reaches a stasis at the stable equilibrium, commonly

referred to as the carrying capacity (k).

Stability in this context refers to the tendency of variables

that define a system to return to equilibria when per-

turbed. External perturbations may drive fluctuations

around the point equilibrium, but the consequence of

stable equilibrium is stasis over time. Notably, the logistic

model has another point equilibrium at the population

size of zero; however, this equilibrium is unstable,

meaning that population size will tend away from this

point. Unstable equilibria are characterized by positive

feedbacks, which cause a value to move from an original

position towards infinity, zero, or towards another stable

equilibria. The ‘alternate attractors model’ demonstrates

these different definitions of equilibrium [16]. It includes

the presence of a nonzero unstable equilibrium bounded

by two stable equilibrium points. Ecological research uses

this model to explain alternations between low and

‘outbreak’ levels of population abundance in tree-killing

bark beetles [24], as well as alterations between seaweed

and coral reef dominated ecological states [25].

Equilibrium as a numeric value also defines some

research in social systems. In game theory, for example,

Nash Equilibrium refers to when each player’s strategy is
www.sciencedirect.com
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Table 1

Typology of equilibrium functions with examples from SES research and applications in STS literature

Form Type Examples from SES Examples from STS

Numeric value Explicit, Descriptive or

Normative
- Species population models and

alternate attractors [24,25]

- Bioeconomic models for fisheries

management [26,27]

- Game theoretic resource use models

[28]

- Bottom-up and top-down energy

models [29�]
- Infrastructure recovery models [30]

Assumption/

Comparative standard

Implicit, Descriptive or

Normative
- Hardy-Weinburg Equlibrium

- Punctuated equilibrium in forest

policy studies [31,32]

- Estimating avoided deforestation and

carbon removal from carbon taxation

[33]

- Estimating CO2 reduction from

removing fossil fuel subsidies [34�,35]
- Governance experiments for

mitigating climate change [36]

Normative value Explicit or Implicit,

Normative
- ‘Half for nature’ and ‘global no net loss

of natural ecosystem’ conservation

objectives [37,38]

- Debates on deep decarbonization [5�]
- Calls for enhanced supply chain

monitoring of tropical agricultural

commodities [1]
a best response to all other players’ strategies in a non-

cooperative, finite game [39,40]. “The idea of the Nash

equilibrium is that a set of strategies, one for each player,

would be stable if nobody has a unilateral incentive to

deviate from their own strategy” [41]. This idea serves as

a unifying theory for many aspects of quantitative social

science. Social dilemmas refer to a family of situations

when the Nash Equilibrium is not a socially desirable

outcome, including ecological degradation from human

activity [42]. The consideration of social dilemmas

through Nash Equilibrium, as with the use of stable

equilibrium to inform wildlife management decisions,

applies normative arguments to insights from explicit

description of stability and equilibrium. Though the

clarity of assumptions and limitations that formal models

of equilibrium provide are useful [43], their application to

large and complex systems is challenging, particularly

with reference to operationalizing stability domains

[44,45].

Equilibria as assumptions or comparative standards

In other research, equilibrium takes the form of a null

model, an idealized state, or a comparative baseline for

understanding complex real-world scenarios. ‘Hardy-

Weinberg equilibrium’ (HWE) is a fundamental concept

in evolutionary biology and population genetics that

illustrates the null-model form of equilibrium [46,47].

It describes a state when evolution is not occurring

[48,49]. For a system to be in HWE, a series of assump-

tions are implicit. These assumptions are: the population

must be indefinitely large, have random mating, no muta-

tion, no migration, no selection, and genes must behave

according to basic rules of mendelian inheritance [48,49].

These assumptions do not describe real-world situations,

but form a comparative baseline. Providing evidence of
www.sciencedirect.com 
departure from HWE, and identifying the assumptions

that are violated, comprise the first steps in research that

demonstrates how real gene frequencies vary from a null

expectation and produce evolutionary change. Advances

in technology and data processing have altered how

researchers test HWE, but its use as a null model in

evolution research remains common.

Research that analyzes and measures change in large-scale

social and ecological systems also includes implicit reference

to stability, using the notion of equilibrium as a comparative

standard. For example, political systems contain negative

feedbacks that enable fluctuation of a policy or value of

interest around a theoretical equilibrium point. Standard

brokering between political parties and interests generate

stability, and policy studies find that change typically occurs

throughgradualprocessesandincrementalshifts.Incontrast,

‘punctuated equilibrium’, a metaphor borrowed from paleo-

biology, describes how rapid transitions can occur due to

causes exogenous to the political system or triggered from

within it [31,50]. Literature that focuses on such policy

transitions often implies stability, rather than theorizing,

defining, and modeling it [51].

Research that identifies urbanization as a driver of global

biotic homogenization similarly relies upon the intuition of

equilibrium within a system. As urban areas expand in size,

artificial structures replace natural land cover or ocean envir-

onments, the number of non-native and commensal species

increases, and the homogenization of species compositions

results [52,53]. Thus, disruption of a previous ecological

stability results in biodiversity declines. Though some

research seeks to understand the relationship between

urbanization and species composition through causal infer-

ence, large-scale counterfactual studies between urban and
Current Opinion in Environmental Sustainability 2021, 49:33–41
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rural areas, or between different urban areas, are few [54].

Perfect counterfactuals may not exist, but the intuition or

assumption of stability and equilibrium that would exist in

the absence of a treatment or intervention provides the

foundation upon which much causal inference research is

based [55,56].

Equilibria as normative standards

In some cases, explicit arguments establish the normative

value of equilibrium in a system. Concepts such as the

‘balance of nature’ or the ‘efficiency of the market’ are

invoked to justify management objectives or decisions. In

both examples, related management goals seek to reduce

human interference to promote a ‘natural’ stability

[57,58].

The concept ofa natural stability and normative equilibrium

is considered problematic in many disciplines that inform

SES literature. Dynamic systems are not always stable, and

definitions of equilibria depend upon temporal or spatial

scales.Inecologicalsciences, theseinsights ledtoashiftaway

from considering ‘climax communities’ an ideal upon

whichtobase fundamental research intocommunitydynam-

ics or restoration management [59]. Contemporary research

considers the relationship between land-use legacies and

contemporary ecosystem function to better understand

global environmental change, address the rapid loss of bio-

diversityaswellasecosystemservices,andrestoreecosystem

integrity [60,61].

In economics, Keynesian and evolutionary approaches

hold that markets may often fail to reach equilibrium

between supply and demand with major implications for

policy and governance [62,63]. Phenomena that inhibit

changes in prices or wages, referred to as rigidities or

stickiness, prohibit perfectly competitive market equilib-

rium between supply and demand [64]. As long empha-

sized in economics textbooks, real and nominal rigidities

can result in aggregate markets operating in a persistent

state of high unemployment in which the return to

equilibrium involves substantial lags [65].

Without a natural equilibrium to manage for, applied

researchers and systems managers are tasked with

defining and defending their objectives [66]. They

must use research to explicitly address how systems

function and what stability is; provide normative

arguments that seek to preserve it or promote transi-

tion; and justify taking specific actions [67]. In some

cases, remaining within a stability domain is a manage-

ment goal. In other cases, managers and advocates seek

to propel systems toward alternate states, as is the case

with unjust or inequitable social arrangements [68]. In

research on STS, normative arguments often address

the value and importance of transition; in doing so,

these studies incorporate implicit and normative

arguments concerning stability [4�].
Current Opinion in Environmental Sustainability 2021, 49:33–41 
Sociotechnical systems post-equilibrium
STS research devotes significant effort to typologizing

categories of sociotechnical transitions [69,70,71�,72], and

clear parallels exist between the types of transitions, the

concepts of stability, and equilibrium. The multi-level

perspective for understanding sociotechnical transition

highlights the roles of niche actors (such as developers of

new technologies), the dominant regime of socio-technical

institutions and related actors, and the exogenous land-

scape beyond niche and regime actors [8]. It distinguishes

between reinforcing and disrupting relationships between

niche innovations, the sociotechnical regime, and land-

scape developments. Reinforcing relationships, which

have stabilizing effects on the regime, are analogous to

stable equilibria with negative feedbacks; disruptive rela-

tionships, which exert pressure and result in regime shifts,

can be analogized to positive feedbacks that cause transi-

tions away from stability (Table 2).

This second category, disruptive transitions, can be trig-

gered by shocks, inducing discontinuous, rapid transitions

resembling regime shifts or punctuated equilibrium.

Examples of exogenous shocks in the literature are many.

For example, a drop in fossil fuel consumption or a rise in

energy prices can rapidly alter the role and viability of an

alternative energy technology, exemplified by the 1970s

oil crisis, which provided the impetus for German R&D

programs in wind and solar technologies [7]. Policies that

change or challenge the sociotechnical regime can also

provide shocks to an energy system; interventions such as

pollution taxes can trigger regime shifts that can be

analogized to the bifurcation events seen in chaotic

dynamical systems [13�].

Top-down planning and effective implementation can also

rapidly change the type of energy end-users are able to

consume, in addition to spurring further innovation [73,74].

In most cases, these disruptive transitions require positive

feedbacks between policy, niche innovations, and the

broader technological landscape [3]. The ongoing transi-

tion to low-carbon electricity generation in the United

Kingdom, for example, began with an initial set of renew-

able energy policies, but has accelerated as those policies

have gained footholds, promoted development and com-

mercialization of low-carbon technologies, and fed back on

the development of more ambitious low-carbon policies

[75]. The activation of feedbacks is termed ‘acceleration’

[76�,77]: technologies emerge and slowly gain disperse,

until decisive policy action causes a ‘tipping point’ [78]

whereby the technology gains widespread acceptance.

This final ‘stabilization’ after the acceleration process bears

a clear resemblance to the new stable state achieved by a

system moving from one equilibrium to another.

Not all sociotechnical transitions, especially those in

energy systems, are defined by shocks. Less severe
www.sciencedirect.com
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Table 2

The sociotechnical transition pathways and their contributing factors, as identified by Geels and Schot [6]

Sociotechnical transition pathway Contributing factors

Reproduction process No landscape pressures for change and a dynamically stable regime lead to the reproduction of the

current sociotechnical regime.

Transformation path Moderate landscape pressure and underdeveloped niche innovations lead a sociotechnical regime to

influence the development of technology. Innovations in this transition pathway do not disrupt the

structure of the sociotechnical regime. Examples include the rise of organic food and the transition in

Dutch sanitation.

De-alignment and re-alignment path Divergent and substantial landscape change with multiple, insufficiently developed niche innovations

lead to an initial disruption of the sociotechnical regime. This disruption and de-alignment is eventually

re-aligned once niche-innovation becomes dominant and a new sociotechnical regime forms. An

example is the American automobile transition.

Technological substitution Strong landscape pressure and developed niche-innovations that lead to a replacement of the existing

sociotechnical regime. Geels and Schot identify the transition from sailing to steamships in Britain as

an example of this pathway.

Reconfiguration pathway Distributed niche-innovations are originally adopted into the sociotechnical regime and then trigger

more fundamental changes. The transition in the US from traditional factories to mass production

facilities demonstrates the characteristics of this pathway.
policy changes, like a feed-in tariff relative to a carbon

tax, can result in slow transitions that do not present

bifurcation-like behavior [13�]. Moreover, exogenous

shocks do not always trigger rapid transitions; the

Chernobyl meltdown briefly strengthened anti-nuclear

activism in the UK, but activists were soon over-

whelmed by pro-nuclear pressure from the UK govern-

ment [5�].

A great deal of research on sociotechnical transition

identifies different pathways to transition, building upon

the foundational pathways typology in Table 2 [6]. As

with all but the first pathway in this typology, this research

takes care to understand when, where, and why STS

change. Increasing the evidence base of when, where,

and why STS remain stable promises to test assumptions

concerning transformation pathways and lend insight into

STS resilience.

Sociotechnical stability
STS transitions literature often addresses stability implic-

itly and uses equilibrium as a comparative standard or

normative value when identifying or modeling transition.

Building upon insights from canonical STS research that

focuses on transition [6,8], we identify three pillars of

stability that can guide explicit and descriptive research

for advancing knowledge of sociotechnical stability. The

three pillars of stability we identify are a lack of substitute

technologies (technological constancy), limited usability

of new technology (sociotechnical efficiency), and socio-

political barriers to the diffusion of new technology (path

dependence).

Technological constancy refers to when technological

niches do not innovate to develop new technology, or

when niche-innovations are so minimal and isolated they
www.sciencedirect.com 
do not diffuse within the system. The emergence and

diffusion of niche-innovations requires the dispersal of

ideas and production capacity [3]. Low connectivity and

reduced dispersal of ideas or communication between

people limits the creation of new sociotechnical relations

necessary for sociotechnical transition [9�,79]. Though

technological constancy may seem less relevant in a

globalized and highly connected world, certain locations,

populations, or periods remain defined by it. Once

niche-innovation emerges and diffuses, transition

increases in likelihood. However, as some STS research

demonstrates, this process is not uniform. Further

empirical research on where and why niche-innovation

remains immature can provide insights into understand-

ing transitions [80].

Sociotechnical efficiency refers to when technologies

and their use combine to generate a regime that is more

efficient than niche-innovation. Even if a new technol-

ogy is more efficient in producing an outcome, its

sociotechnical efficiency depends upon social dimen-

sions that lead to user preference and uptake. The use

of two-dimensional versus three-dimensional remote

sensing data for monitoring and evaluating forest areas

demonstrates differences in technical versus sociotech-

nical efficiency.  Although LiDAR technology  (a remote

sensing technique that generates a three-dimensional

profile of a given land surface) provides higher dimen-

sional information on forest resources, it is not widely

available for organizations, employees, and researchers

to view and analyze [81]. Efficiencies, such as cost,

availability, and familiarity lead to the continued use of

two-dimensional imagery. Understanding sociotechni-

cal efficiencies in a pre-existing STS emphasizes the

importance of understanding how rules, users, and

technology  reinforce one another to generate regime

stability [8].
Current Opinion in Environmental Sustainability 2021, 49:33–41
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Path dependence in STS, also referred to as ‘lock-in’ or

‘inertia’, is a common driver of sociotechnical stability

[82–84]. Sociotechnical regimes produce multiple rein-

forcing processes to facilitate the use, dissemination, and

stability of a STS [15]. For example, current debates

about the impact of removing fossil fuel subsidies in

producer countries investigate one reinforcement mech-

anism for fossil fuel production. By modeling the amount

and value of current oil production, forecasting and com-

paring carbon emissions in a future with or without

subsidies, and examining the symbolic value of subsidy

removal for spurring transitions from fossil fuel use, these

debates aim to determine how removing this economic

reinforcement mechanism will contribute to climate

mitigation and sociotechnical transitions for energy pro-

duction [34�,35,85,86]. Path dependencies often change

slowly, through incremental deviations [87]. However,

the speed and scale with which sociotechnical path

dependencies can change varies greatly, often depending

on sociopolitical coordination, infrastructure, and

sociotechnical efficiency [74]. Path dependence is not a

foregone conclusion; it is constructed [88]. Studying how

and where path dependence is constructed can inform

future efforts to promote the stability and resilience of

sustainable STS.

Developing a strong evidence base for when, where,

and why STS remain stable can advance research on socio-

technical transitions and resilience within STS. Studies

that explicitly describe stability within a system are

necessary for distinguishing stochastic change from system

transition. Investigating cases of technological constancy,

sociotechnical efficiency, and path dependence can also

advance study of sociotechnical resilience. Similar to

stability and equilibrium, resilience is a major focus in

SES research but is not a common topic of study in STS

literature [89]. Research on the extent to which STS can

experience perturbations or shocks before experiencing

transition finds practical application in sustainable

infrastructure research [90�] as well as in the conservation

of STS that are more just and sustainable than niche-

innovations that might disrupt them. As the trajectory of

SES research demonstrates [91,92], a growing base of

empirical evidence can help refine conceptual insights

concerning stability and transition within a system.

Conclusion
STS research often focuses on sustainable transitions, since

such transitions are critical and timely [4�,5�]. However, the

identification of transition depends upon notions of stabil-

ity and its associated equilibrium. Drawing on insights from

SES research and the disciplines that inform it, we consider

stability in STS and sociotechnical transitions literature.

We advance a typology to consider how stability is

incorporated into SES and STS research and identify three

common forms equilibrium takes in the articulation of

stability. STS and sociotechnical transition literature often
Current Opinion in Environmental Sustainability 2021, 49:33–41 
rely upon the implicit and normative incorporation of

stability. However, explicit and descriptive research on

stability within STS promises to contribute to the impor-

tant agenda of understanding of transitions in general [9�]
by providing insights on where transitions do not occur and

who does not participate in sociotechnical transitions. With

more empirical findings concerning the stability of STS,

future research will be better positioned to inform over-

arching theories about how and when sociotechnical transi-

tions occur and how such transitions result in in sustained

and resilient change.
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